skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Davis, K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present an ultraviolet to infrared search for the electromagnetic (EM) counterpart to GW190425, the second ever binary neutron star merger discovered by the LIGO-Virgo-KAGRA Collaboration. GW190425 was more distant and had a larger localization area than GW170817, so we use a new tool,Teglon, to redistribute the GW190425 localization probability in the context of galaxy catalogs within the final localization volume. We derive a 90th percentile area of 6688 deg2, a ∼1.5× improvement relative to the LIGO/Virgo map, and show howTeglonprovides an order-of-magnitude boost to the search efficiency of small (≤1 deg2) field-of-view instruments. We combine our data with a large, publicly reported imaging data set, covering 9078.59 deg2of unique area and 48.13% of the LIGO/Virgo-assigned localization probability, to calculate the most comprehensive kilonova (KN), short gamma-ray burst (sGRB) afterglow, and model-independent constraints on the EM emission from a hypothetical counterpart to GW190425 to date under the assumption that no counterpart was found in these data. If the counterpart were similar to AT 2017gfo, there would be a 28.4% chance of it being detected in the combined data set. We are relatively insensitive to an on-axis sGRB, and rule out a generic transient with a similar peak luminosity and decline rate as AT 2017gfo to 30% confidence. Finally, across our new imaging and publicly reported data, we find 28 candidate optical counterparts that we cannot rule out as being associated with GW190425, finding that four such counterparts discovered within the localization volume and within 5 days of merger exhibit luminosities consistent with a KN. 
    more » « less
    Free, publicly-accessible full text available July 23, 2026
  2. Abstract Extreme climate events are becoming more frequent, with poorly understood implications for carbon sequestration by terrestrial ecosystems. A better understanding will critically depend on accurate and precise quantification of ecosystems responses to these events. Taking the 2019 US Midwest floods as a case study, we investigate current capabilities for tracking regional flux anomalies with “top‐down” inversion analyses that assimilate atmospheric CO2observations. For this analysis, we develop a regionally nested version of the NASA Carbon Monitoring System‐Flux system for North America (CMS‐Flux‐NA) that allows high resolution atmospheric transport (0.5° × 0.625°). Relative to a 2018 baseline, we find the 2019 US Midwest growing season net carbon uptake is reduced by 11–57 TgC (3%–16%, range across assimilated CO2data sets). These estimates are found to be consistent with independent “bottom‐up” estimates of carbon uptake based on vegetation remote sensing (15–78 TgC). We then investigate current limitations in tracking regional carbon budgets using “top‐down” methods. In a set of observing system simulation experiments, we show that the ability of atmospheric CO2inversions to capture regional carbon flux anomalies is still limited by observational coverage gaps for both in situ and satellite observations. Future space‐based missions that allow for daily observational coverage across North America would largely mitigate these observational gaps, allowing for improved top‐down estimates of ecosystem responses to extreme climate events. 
    more » « less
  3. Abstract Many aspects of global ecosystem degradation are well known, but the ecological implications of variation in these effects over scales of kilometers and years have not been widely considered. On tropical coral reefs, kilometer-scale variation in environmental conditions promotes a spatial mosaic of coral communities in which spatial insurance effects could enhance community stability. To evaluate whether these effects are important on coral reefs, we explored variation over 2006–2019 in coral community structure and environmental conditions in Moorea, French Polynesia. We studied coral community structure at a single site with fringing, back reef, and fore reef habitats, and used this system to explore associations among community asynchrony, asynchrony of environmental conditions, and community stability. Coral community structure varied asynchronously among habitats, and variation among habitats in the daily range in seawater temperature suggested it could be a factor contributing to the variation in coral community structure. Wave forced seawater flow connected the habitats and facilitated larval exchange among them, but this effect differed in strength among years, and accentuated periodic connectivity among habitats at 1–7 year intervals. At this site, connected habitats harboring taxonomically similar coral assemblages and exhibiting asynchronous population dynamics can provide insurance against extirpation, and may promote community stability. If these effects apply at larger spatial scale, then among-habitat community asynchrony is likely to play an important role in determining reef-wide coral community resilience. 
    more » « less
  4. Abstract We present analysis of the plateau and late-time phase properties of a sample of 39 Type II supernovae (SNe II) that show narrow, transient, high-ionization emission lines (i.e., “IIn-like”) in their early-time spectra from interaction with confined, dense circumstellar material (CSM). Originally presented by W. V. Jacobson-Galán et al., this sample also includes multicolor light curves and spectra extending to late-time phases of 35 SNe with no evidence for IIn-like features at <2 days after first light. We measure photospheric phase light-curve properties for the distance-corrected sample and find that SNe II with IIn-like features have significantly higher luminosities and decline rates at +50 days than the comparison sample, which could be connected to inflated progenitor radii, lower ejecta mass, and/or persistent CSM interaction. However, we find no statistical evidence that the measured plateau durations and56Ni masses of SNe II with and without IIn-like features arise from different distributions. We estimate progenitor zero-age main-sequence (ZAMS) masses for all SNe with nebular spectroscopy through spectral model comparisons and find that most objects, both with and without IIn-like features, are consistent with progenitor masses ≤12.5M. Combining progenitor ZAMS masses with CSM densities inferred from early-time spectra suggests multiple channels for enhanced mass loss in the final years before core collapse, such as a convection-driven chromosphere or binary interaction. Finally, we find spectroscopic evidence for ongoing ejecta-CSM interaction at radii >1016cm, consistent with substantial progenitor mass-loss rates of ∼10−4–10−5Myr−1(vw < 50 km s−1) in the final centuries to millennia before explosion. 
    more » « less
    Free, publicly-accessible full text available October 8, 2026
  5. Abstract We present ultraviolet to infrared observations of the extraordinary Type IIn supernova 2023zkd (SN 2023zkd). Photometrically, it exhibits persistent and luminous precursor emission spanning ∼4 yr preceding discovery (Mr ≈ −15 mag, 1500 days in the observer frame), followed by a secondary stage of gradual brightening in its final year. Post-discovery, it exhibits two photometric peaks of comparable brightness (Mr ≲ −18.7 mag andMr ≈ −18.4 mag, respectively) separated by 240 days. Spectroscopically, SN 2023zkd exhibits highly asymmetric and multicomponent Balmer and HeIprofiles that we attribute to ejecta interaction with fast-moving (1000–2000 km s−1) He-rich polar material and slow-moving (∼400 km s−1) equatorially distributed H-rich material. HeIIfeatures also appear during the second light curve peak and evolve rapidly. Shock-driven models fit to the multiband photometry suggest that the event is powered by interaction with ∼5–6Mof CSM, with 2–3Massociated with each light curve peak, expelled during mass-loss episodes ∼3–4 yr and ∼1–2 yr prior to explosion. The observed precursor emission, combined with the extreme mass-loss rates required to power each light curve peak, favors either super-Eddington accretion onto a black hole or multiple long-lived eruptions from a massive star to luminosities that have not been previously observed. We consider multiple progenitor scenarios for SN 2023zkd, and find that the brightening optical precursor and inferred explosion properties are most consistent with a massive (MZAMS≥ 30M) and partially stripped He star undergoing an instability-induced merger with a black hole companion. 
    more » « less
    Free, publicly-accessible full text available August 13, 2026
  6. Abstract We present UV–optical–near-infrared observations and modeling of supernova (SN) 2024ggi, a type II supernova (SN II) located in NGC 3621 at 7.2 Mpc. Early-time (“flash”) spectroscopy of SN 2024ggi within +0.8 days of discovery shows emission lines of Hi, Hei, Ciii, and Niiiwith a narrow core and broad, symmetric wings (i.e., “IIn-like”) arising from the photoionized, optically thick, unshocked circumstellar material (CSM) that surrounded the progenitor star at shock breakout (SBO). By the next spectral epoch at +1.5 days, SN 2024ggi showed a rise in ionization as emission lines of Heii, Civ, Niv/v, and Ovbecame visible. This phenomenon is temporally consistent with a blueward shift in the UV–optical colors, both likely the result of SBO in an extended, dense CSM. The IIn-like features in SN 2024ggi persist on a timescale oftIIn= 3.8 ± 1.6 days, at which time a reduction in CSM density allows the detection of Doppler-broadened features from the fastest SN material. SN 2024ggi has peak UV–optical absolute magnitudes ofMw2= −18.7 mag andMg= −18.1 mag, respectively, that are consistent with the known population of CSM-interacting SNe II. Comparison of SN 2024ggi with a grid of radiation hydrodynamics and non–local thermodynamic equilibrium radiative-transfer simulations suggests a progenitor mass-loss rate of M ̇ = 10 2 M yr−1(vw= 50 km s−1), confined to a distance ofr< 5 × 1014cm. Assuming a wind velocity ofvw= 50 km s−1, the progenitor star underwent an enhanced mass-loss episode in the last ∼3 yr before explosion. 
    more » « less
  7. Abstract We present ultraviolet/optical/near-infrared observations and modeling of Type II supernovae (SNe II) whose early time (δt< 2 days) spectra show transient, narrow emission lines from shock ionization of confined (r< 1015cm) circumstellar material (CSM). The observed electron-scattering broadened line profiles (i.e., IIn-like) of Hi, Hei/ii, Civ, and Niii/iv/vfrom the CSM persist on a characteristic timescale (tIIn) that marks a transition to a lower-density CSM and the emergence of Doppler-broadened features from the fast-moving SN ejecta. Our sample, the largest to date, consists of 39 SNe with early time IIn-like features in addition to 35 “comparison” SNe with no evidence of early time IIn-like features, all with ultraviolet observations. The total sample includes 50 unpublished objects with a total of 474 previously unpublished spectra and 50 multiband light curves, collected primarily through the Young Supernova Experiment and Global Supernova Project collaborations. For all sample objects, we find a significant correlation between peak ultraviolet brightness and bothtIInand the rise time, as well as evidence for enhanced peak luminosities in SNe II with IIn-like features. We quantify mass-loss rates and CSM density for the sample through the matching of peak multiband absolute magnitudes, rise times,tIIn, and optical SN spectra with a grid of radiation hydrodynamics and non-local thermodynamic equilibrium radiative-transfer simulations. For our grid of models, all with the same underlying explosion, there is a trend between the duration of the electron-scattering broadened line profiles and inferred mass-loss rate: t IIn 3.8 [ M ̇ / (0.01Myr−1)] days. 
    more » « less
  8. Abstract The modern study of astrophysical transients has been transformed by an exponentially growing volume of data. Within the last decade, the transient discovery rate has increased by a factor of ∼20, with associated survey data, archival data, and metadata also increasing with the number of discoveries. To manage the data at this increased rate, we require new tools. Here we presentYSE-PZ, a transient survey management platform that ingests multiple live streams of transient discovery alerts, identifies the host galaxies of those transients, downloads coincident archival data, and retrieves photometry and spectra from ongoing surveys.YSE-PZalso presents a user with a range of tools to make and support timely and informed transient follow-up decisions. Those subsequent observations enhance transient science and can reveal physics only accessible with rapid follow-up observations. Rather than automating out human interaction,YSE-PZfocuses on accelerating and enhancing human decision making, a role we describe as empowering the human-in-the-loop. Finally,YSE-PZis built to be flexibly used and deployed;YSE-PZcan support multiple, simultaneous, and independent transient collaborations through group-level data permissions, allowing a user to view the data associated with the union of all groups in which they are a member.YSE-PZcan be used as a local instance installed via Docker or deployed as a service hosted in the cloud. We provideYSE-PZas an open-source tool for the community. 
    more » « less
  9. Musier-Forsyth, Karin (Ed.)
    RNA-binding proteins play crucial roles in various cellular functions, and contain abundant disordered protein regions. The disordered regions in RNA-binding proteins are rich in repetitive sequences, such as poly-K/R, poly-N/Q, poly-A, and poly-G residues. Our bioinformatic analysis identified a largely neglected repetitive sequence family we define as electronegative clusters (ENCs) that contain acidic residues and/or phosphorylation sites. The abundance and length of ENCs exceed other known repetitive sequences. Despite their abundance, the functions of ENCs in RNA-binding proteins are still elusive. To investigate the impacts of ENCs on protein stability, RNA-binding affinity, and specificity, we selected one RNA-binding protein, the ribosomal biogenesis factor 15 (Nop15) as a model. We found that the Nop15 ENC increases protein stability and inhibits nonspecific RNA binding, but minimally interferes with specific RNA binding. To investigate the effect of ENCs on sequence specificity of RNA binding, we grafted an ENC to another RNA-binding protein, Ser/Arg-rich splicing factor 3 (SRSF3). Using RNA Bind-n-Seq, we found that the engineered ENC inhibits disparate RNA motifs differently, instead of weakening all RNA motifs to the same extent. The motif site directly involved in electrostatic interaction is more susceptible to the ENC inhibition. These results suggest that one of functions of ENCs is to regulate RNA binding via electrostatic interaction. This is consistent with our finding that ENCs are also overrepresented in DNA-binding proteins, while underrepresented in halophiles, in which nonspecific nucleic acid binding is inhibited by high concentrations of salts. 
    more » « less
  10. null (Ed.)